Technology

Technologys

Reversing Paralysis

Star InactiveStar InactiveStar InactiveStar InactiveStar Inactive
 

Scientists are making remarkable progress at using brain implants to restore the freedom of movement that spinal cord injuries take away.The French neuroscientist was watching a macaque monkey

as it hunched aggressively at one end of a treadmill.

His team had used a blade to slice halfway through the animal’s spinal cord, paralyzing its right leg. Now Courtine wanted to prove he could get the monkey walking again. To do it, he and colleagues had installed a recording device beneath its skull, touching its motor cortex, and sutured a pad of flexible electrodes around the animal’s spinal cord, below the injury. A wireless connection joined the two electronic devices.The result: a system that read the monkey’s intention to move and then transmitted it immediately in the form of bursts of electrical stimulation to its spine. Soon enough, the monkey’s right leg began to move. Extend and flex. Extend and flex. It hobbled forward. “The monkey was thinking, and then boom, it was walking,” recalls an exultant Courtine, a professor with Switzerland’s École Polytechnique Fédérale de Lausanne.In recent years, lab animals and a few people have controlled computer cursors or robotic arms with their thoughts, thanks to a brain implant wired to machines. Now researchers are taking a significant next step toward reversing paralysis once and for all. They are wirelessly connecting the brain-reading technology directly to electrical stimulators on the body, creating what Courtine calls a “neural bypass” so that people’s thoughts can again move their limbs. At Case Western Reserve University, in Cleveland, a middle-aged quadriplegic—he can’t move anything but his head and shoulder—agreed to let doctors place two recording implants in his brain, of the same type Courtine used in the monkeys. Made of silicon, and smaller than a postage stamp, they bristle with a hundred hair-size metal probes that can “listen” as neurons fire off commands.To complete the bypass, the Case team, led by Robert Kirsch and Bolu Ajiboye, also slid more than 16 fine electrodes into the muscles of the man’s arm and hand. In videos of the experiment, the volunteer can be seen slowly raising his arm with the help of a spring-loaded arm rest, and willing his hand to open and close. He even raises a cup with a straw to his lips. Without the system, he can’t do any of that.Just try sitting on your hands for a day. That will give you an idea of the shattering consequences of spinal cord injury. You can’t scratch your nose or tousle a child’s hair. “But if you have this,” says Courtine, reaching for a red espresso cup and raising it to his mouth with an actor’s exaggerated motion, “it changes your life.”

logo.png
©2022 Techystory All rights reserved

Search